
1. Phys. Chum. Solids Vol. 51. kuo. 3. pp. 209-?I 5. 1990 
Prinrcd in Great Briram. 

0022.3697190 S3.00 + 0.00 

Pergamon Press plc 

THE CALCULATION OF THE EFFECTIVE VALUES OF 
PHYSICAL PROPERTIES FOR RANDOM COMPOSITES 

WITH CIRCULAR INCLUSIONS 

G. BABOS and D. CHAS+APIS 
lnstitut fiir Theoretische und Angewandte Physik der Universitit Stuttgart, F.R.G. 

(Received 26 May 1989; accepted in reaised form 4 October 1989) 

Abstract-The aim of this work is to calculate the effective values of linear physical properties, which are 
described by tensors of the second rank, for composite materials. Properly chosen mathematical tools of 
statistics, such as correlation and probability density functions, geometrical information as well as 
optimum upper and lower bounds, are applied to calculate the effective values of the physical tensor 
properties, such as the electrical and thermal conductivity, in random systems consisting of two or more 
phases. Such systems are called composites. 
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1. INTRODUCI’ION 

In this work the basic statistical ensemble, the tensor 
properties of which are computed, is physically repre- 
sented by a composite consisting of two phases, the 
first one called the matrix phase and the second one 
the phase of the inclusions. The inclusions are dis- 
tributed randomly in the matrix and they may form 
configurations of two or more intersecting areas. For 
the same purpose the correlation functions are being 
calculated within the framework of the Poisson 
model taking account of the geometrical shape of 
the inclusions (see Sections 2 and 3). Ultimately, use 
is made of optimum upper and lower bounds for 
statistically homogeneous and isotropic media (see 
Sections 4 and 5). 

One relates the correlation functions to some 
probability density function, here the Poisson func- 
tion, governing the configurations of two or more 
inclusions. The method of computing correlation 
functions taking into account the geometrical shape 
of the inclusions as well as material factors, is a 
new branch of science based on original works 
of Matheron [5], Serra [6,7] and others, called 
mathematical morphology. 

In the present paper explicit calculations of the 
one-, two- and three-point correlation functions are 
performed considering the inclusions to be circular 
areas for the two-dimensional case. The inclusions 
correlate to each other with the common geometrical 
area of intersection. Thus the center-to-center dis- 
tance defines a correlation length the variation of 
which estimates the extent of the correlation effects. 
The geometrical configurations of two or three inter- 
secting circular inclusions are described analytically 
and exact results are presented. 

As referred to here, the property of electrical or 
heat conductivity, which we denote with the greek 
symbol 6, is considered to be a function of Cartesian 

coordinates r, namely C(r). Such functions, which we 
call structure functions, can be defined for all tensor 
properties. The tensor field of the electrical (or heat) 
conductivity describes the distribution of the prop- 
erty over the matrix phase as well as over the various 
inclusions of the composite. 

It will be assumed further that the composite is 
statistically homogeneous and isotropic, that is 

(d(r,) . . . &(r,)) = (d(r, + r) . . . b(r, + r)) 

and 

(*(r,). . . ~.(cJ = <[4...ib@J. . . [4.,&d). 

(4 rp. i is a torsional operator, 9, cp, I(/ are the Euler 
angles). 

The effective value of the property denoted by beR 
is determined within optimum upper and lower 
bounds obtained from a series, which includes terms 
with correlation functions of all orders up to infinity. 
The series has the form 

*en?= (5) _ (y&‘) + @‘P&y) _ . . . + . . . 

For further details about this series the reader should 
consult Ref. 1. P is the modified Green function, also 
a tensor of the 2nd rank, obtained from the Green 
function as: 

Tij(r,, r?) = didjG (r,, r2); 

b’ is the deviation from the mean: b’ = b - (5). Here 
G(r,, r2) = 1/(4na,Ir, - r,I), which is the solution of 
the Poisson equation. 

With double differentiation one obtains for the 
modified Green function in three-dimensional space: 
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The angles 3, o, are related to the vectorspace 
about I rl - r?I. Eij = 6,,/(3a,) is the local and 
F,j = (6,, - 3e,ej)/(4nuo), expressed in Cartesian co- 
ordinates, the non-local part of r. ei, ej are the 
unit vectors and S, the Kronecker symbol. The 
ensemble averages with the notation ( ) as well as 
the effective value 5’” do not depend on position in 
the macrohomogeneous case. cr,, is the material con- 
stant of an isotropic and homogeneous reference 
medium, equal to the average value of b, that is 
a, = (a). 

There exist two general bound theorems in this 
series; one, due to Dederichs and Zeller [8], yields the 
bounds of odd order; the other, due to Kriiner [I], 
those of even order. Such bounds exploit statistical 
information given in terms of correlation functions 
up to order n and will be denoted by u(+“). The sign 
“+” indicates that it is an upper and “-” a lower 
bound for n = 1,2,3,. . . . Normally one is content 
with bounds of low order, i.e. n < 3. The bound a(+‘) 
is that of Voigt [9] and cr(-” that of Reuss [lo]. The 
bounds u(+‘) and u(-r’ are those of Hashin and 
Strikman [l 11. The bounds u(+” and u(-~) given by 
KrGner in [ 131 have a complicated form (see [12, 131). 
A detailed presentation of the theoretical point of 
view as well as numerical calculations of+ bounds 
of third order for circular inclusions compose this 
article. The results obtained here represent an 
extension to those of Voigt-Reuss and Hashin- 
Strikman with which they are finally compared in a 
graph. 

2. THE CORRELATION FUNCTIONS 

For a two-phase statistically homogeneous and 
isotropic structure with isotropic and homogeneous 
phases one defines the following mathematical 
elements: 

(a) Two (constant) material parameters u, and uz, 
the first one defined in phase 1 and the second one in 
phase 2. The distribution of the physical property of 
electrical or heat conductivity is homogeneous over 
the two phases. 

(b) Two so-called indicatrices are defined as 

k,(r) = 
1 at r in the phase 1 
0 elsewhere 

Mr) = 
1 at r in the phase 2 
0 elsewhere 

Over the entire phasefield the relation 

(1) 

k,(r) + k,(r) = 1 

is valid, and more generally 

1 k,(r) = 1. 

(2) 

Therefore it is sufficient to prescribe one indicatrix for 
a two-phase material. Moreover, 

I k,(r)dA, = A,, 

k,(r)dA,=A,, @,+&=A) (3) 

with A, and A, the areas of the two phases. One can 
easily see that both functions k,(r) and k?(r) relate to 
the area fractions of the composite. Regarding one 
ensemble of materials one gets: 

(k,(r)) = AI/A, Wr)) = AdA, (4) 

using the symbol ( . . . > to indicate averaging over the 
ensemble, so far as the distribution of the material 
parameters are statistically homogeneous. If both 
relations (3) and (4) are simultaneously valid, one 
obtains an expression for the ergodic hypothesis. This 
basic principle of statistical physics, which will be 
repeatedly used in this work, states briefly that the 
ensemble averages are equal to the area (volume) 
averages. 

(c) The two-point correlation function 
(u(r)u(r+h)), with h as a displacement in space, or 
more specifically, if we consider circular inclusions, 
means the center-to-center vector of two correlated 
inclusions. 

The material function u(r) will be expressed by the 
indicatrices k,(r) and k2(r). Using (3) one gets: 

(a W = u,Mr)) + ~2(Mr)) 

<a@ + W = o,Mr + W + +(k,(r + W. (5) 

One generally obtains for the correlation function of 
second order: 

(u(r)u(r+h)>=~a,a,C,(h) (i,j= 1.2) (6) 

which is valid for more than two phases. C,(h) is 
called the covariance function. It is given as: 

C,(h) = (ki(r)kj(r + h)). (7) 

For the calculation of the two-point correlation 
functions the covariances C,, , Cz2, Cjz are needed. C,, 
and C,, are expressed by Cz2, and with eqns (4) and 
(7) the following relations are obtained: 

G(h) = (MrMr + hD (8) 

C,,(h) = (k,(r)k,(r + h)) = 1 - 2$ + C,,(h) (9) 

C,,(h) = (k,(r)k,(r + h)) = $ - C&h). (10) 
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At this point a brief reference to the Poisson model 
is made according to which the probability density 
function can be defined (for further information see 
[2,3]). One thinks of two-dimensional space, in which 
points are defined. These points are distributed ran- 
domly and uncorrelated. TheoreticaIly one attributes 
a physical quantity to each point. For reasons of 
practicality it is less cumbersome if one makes use of 
an infinitesimal area of points dr* and simultaneously 
defines a density p, which is a constant independent 
of r. In the Poisson model, presuming homogeneity 
in space, the points are supposed to be centers of the 
so-called Poisson cells, which grow symmetrically in 
time and space, so that they can be considered as 
circular inclusions, in the ideal case. They can also 
intersect among themselves. Under this assumption 
one writes a Poisson probability density function 
for the case that configurations of two intersecting 
inclusions appear: 

G2ch) = exp( -_pA (h% (11) 

p is the Poisson point-density and A is the common 
area of the intersecting circular inclusions (see also 
[4], p. 82). Substituting eqn (11) in eqns (9) (10) and 
also in (6) one has: 

<a(r)a(r+h)>=a+Bexpi-_pA01)~, 

where 

(12) 

A2 
SL =cf, 2 - 2a,ca, - 62) y-9 

p = ((5, - a2)2. 

The model also applies to spherical inclusions, if 
one makes slight changes in the above formulae, 
substituting volumes for areas. What is needed, how- 
ever, is the deviation formulae rather than only the 
correlation functions. The deviation of second order 
is written as: 

<cr’(r)a’(r + h)) = (a(r)a(r + h)) - (a>*. (13) 

In analogy to the two-point correlation functions 
the three-point correlation functions are constructed 
for the case that three indusions correlate to each 
other: 

<a@>c(r + h&(r + h& 

= c o;a,a,Cijk(h,, h,) (iJ, k = 1,2). (14) 

Or more explicitly: 

(a(r)e(r + hi)a(r -t h2)) 

= G,,(h,, hz) + 3+C,,,(h,, b,) 

+ 3~,&u(h,rh~) + &&(hr, h,). (IS) 

The covariance functions for three points C,i,, C12,, 
C,,, are expressed by Cm, and one obtains for the 
three-point correlation function: 

GJ W (r f W tr + h2)) 

= Y + &$?4 + ~,Gz@,) 

+ G,tW - IGdhr U WI 

where hi, h2 are the center-to-center vectors of three 
correlated circular inclusions. Further 

y = cr: - 3ui(a, - a*) $ 

ls=a;- 3U:U, f 3U,U; 

L = CJ;(G, - 317,) 

[ = (a, - a*)? 

The deviation of third order is then 
(a’(r)u’(r + h,)d(r + h2)): 

(u’(r)a’(r + hJa’(r + h,)) 

= Iv -3a<~)f2<flY+(~ +B(~>K2011) 

+ (d -B <a))G2(hJ + (c -B <~))C2AV 

- IG,,(h,, WI. (17) 

Under the same assumption as for fl I] a Poisson 
probability density function for the case that three 
circular inclusions may intersect is written as: 

C222th, h2) = emI-PA (h,, h2)l. (18) 

3. THE GEOMETRICAL CONFIGURATIONS OF 
THE CIRCULAR INCLUSIONS 

Let us first consider the case when two circular 
inclusions correlate to each other. They may intersect 
or touch each other. Let the correlation length be the 
center-to-center vector h, with lhl d D, the diameter 
of the circles which we consider to be equal for all 
inclusions. For the case of two intersecting circular 
inclusions their geometrical common area on the 
plane is needed, as shown in Fig. 1. 

A,fh ) 

Fig. I. Intersection of two circular areas. 
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This area is given by the function: 

A,(h) = 24 (0) - 401); (1% 

A,(h) is the geometrical common area of two circles, 
A (0) is the area when the centers of the two circles 
coincide and this happens if lhj = 0 and A,(h) is the 
area of intersection. 

For the case when three circular inclusions inter- 
sect, three correlation lengths I hl I, I h,l, I h,l Q D are 
defined, which are the sides of a triangle, whose three 
points are the centers of the circles. The common area 
is then: 

Fig. 2. The general case of three circular intersection areas. 

A,(h,, h,, h,) = 3A (0) - A,(h,) - A,(h2) 

- -4(W + A,,@,, h,, W. (20) 

A, is the common area of the three circular inclusions, 
A,(h,), A,(h,), A,(h,) are the three areas of inter- 
section and A,&, h,, h3) is the common area of the 
three areas of intersection, as shown in Fig. 2. 

In order to avoid complications related to the 
definition of a coordinate system at the center or 
outside a circle area, all formulae for the calculated 
areas have been expressed by two parameters, the 
diameter D which is constant and the correlation 
length I h I = h, which is a variable. 

After formal algebraic computations the area of 
intersection for two circles is found to be [14]: 

02 
A,(h) = T arccos $ 

0 

-$/m, h =lhl. (21) 

The common area according to eqn (19) is given by 

A,(h) = A (0) - A,(h) 

nD' D2 
=-j--Tarccos ++S. (22) 

The case of three intersecting circular inclusions is 
more complicated. One has three geometrical areas 
of intersection given by relation (21) depending on 
h,r]h,], h2=]h2], h,rlh,l as follows: 

D2 h A,(h,) = T arccos D 0 -$m (23) 

A,(hJ = q arccos $ 
0 

-$m (24) 

2 
A,(h,) = 4 arccos 2 

0 

The difficulty arises if one tries to calculate the last 
term A,, in eqn (20). This term cannot be expressed 

in a simple formula, at least according to the method 
followed here, because it is derived from the integral 
form (see also Fig. 2): 

A,,= j;Mx)dx +Il:]y,(x)dx - j;I.,(.x)dx (26) 

with 

y,(x) = f J TWX2 

Y2(X) = f 
J 

; - (x - xo2)2 

Y,(x)=Y03+z. 

The equations above define three 
sions centered at (x0,, yolk (x0,, y02), 

circular inclu- 

(x0,, Y,,). The 
first circle is centered at x0, = 0, which is equivalent 
to assumption of homogeneity. The integration 
boundaries are determined using analytic geometry 
and are functions of the plane coordinates expressed 
in relative coordinates h,, h,, h, so that they take a 
very complicated form [ 141. This is the reason why the 
Ad term will be calculated numerically. A computer 
program was set up, a part of which computes this 
integral form. The common area of three intersecting 
circular inclusions is given by: 

A,@,, h h,) =q[$-arccose) 

- arccose) - arccos@)] 

+ i(h,dm 

+ h,Jm + h,Jm) 

+ AAh,, h,, h,). (27) 

The calculated common areas are inserted into the 
Poisson distribution functions (11) and (18) for each 
case, respectively. 
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4. THE OPTIMUM UPPER AND LOWER 
BOUNDS FOR STATISTICALLY 

HOMOGENEOUS AND 
ISOTROPIC MEDIA 

The effective values @’ of the electrical or heat 
conductivity will be calculated using the optimum 
bound of first and third order showing that edf can 
be determined more exactly within the third order 
bounds. 

The & and vii terms can be written as functions of 
spherical coordinates 9, o, for the case of spherical 
inclusions and they reduce to functions of 9 for the 
case of circular inclusions. 9 is the angle of the vectors 
h2 and h, (Fig. 2). 

After having calculated the correlation functions 
up to order three, and using the ergodic hypoth- 
esis the following integral forms are evaluated 
nume~cally: 

~WW~t@ + W dh: (36) 

= T,(h,)f,,(h,)(a’(r)a’(r + h,)o’(r + h,)) dhf dh:. (37) 

The upper and lower bounds of first order are those 
of Voigt and Reuss given by the mean value of the 
structure function u as follows: 

o(+i) =T (a) (28) 

1 

0 

-I 
Q(-I)=. _ z (s)-1, (20) 

(i 

with s = I/a. 
Using eqns (4) and (5). the mean value (a) is 

found to be: 

<o)_(@i-b*)~+~~. (30) 

A similar computation gives (s) as: 

(s)= ;-; +++. ( ) 2 
(31) 

The third order upper and lower bounds are [13]: 

Integrals for the inverse problem (33) which deter- 
mines the lower bounds are 
way. 

evaluated in a similar 

5. NUMERICAL RESULTS 

Integration (36) is simpler than (37), because the 
symmetrical non-local term results in zero, so that the 
local term remains as a contribution to (36), which is 
equal to: (a’(r)a’(r)) E. 

In (37), however, the integral over the non-local 
term does not vanish and has to be derived numeri- 
cally. The reason is that the previously obtained 
Poisson probability density (18) includes the sum of 
three internal integrals with variable integration 
upper bounds in the exponent of the function. The 
only way to calculate these integrals is to construct a 
computer program which works out the problem 
numerically. The method used was the recursive 
Gaussian quadrature with six points in each interval 
and five intervals for each variable; because the 
Gaussian quadrature does not take into account the 

fJf+3) = (0 > - 
<a‘(r)Tijlr, h,f~‘(r + h)) 

[(Q’(rIrJr, h,W(r + hi)) + (g’(r)rJr, h,W(r + h,)Tij(r, h&‘(r + h,))] 
(32) 

de3) = 

W(r)Aii(r, h,)s’(r + h,)) 

“) - [(S’(r)Aij(r, h,)s’(r + hi)) + (S’(r)Aij(r, h,)s’(r + h,)A,(r, h,)s’(r + $))I 
-I. (33) 

The modified Green functions T,{r, h,), A&, h,) are end points of the intervals it is a very suitable method 
for the two-dimensional case: ' ' 

F,ifs) 
~tj(rA,)=E;,~(r,fi,)+ hZ 

vijts) 
Aij(r, h,)= UijS(r, h,)+F, 

where 

for functions which are in a respect “lightly” singular 
at the end of the integration interval. Such a case is 

(34) the function included in (37) [14]: 

E, = 
1 

-- Sj** 
2x <a) 

vii 5= - ’ 6.. 
2n (s) I* 

(35) 
f’h, h,,8) = hh ‘OS ’ exp{ -pAAh,, h,, 9>}, 

I 2 

h, > 0, h2 > 0. (38) 

The integration variables are h,, h,, h,. The variable 
h, can be written according to the cosinus theorem 
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as: h, = h, + hz - 2h,h, cos 9, introducing the angle 9 
between the vectors h, and h,. The bounds for the 
integration in (37) are 

with n B m integer numbers. The integration in (38) 
reduces to the calculation of 

P= 
SMI 

P(h,,h,,9)d9 
> 1 dhz dh!. 

For explicit results the following assumptions 
are made: the density p = n/A is arbitrarily set 
equal to one for the case of very low inclusion 
concentration in the matrix. A more complete 
computation of the bounds at middle and high 
concentrations of the inclusions should be desirable, 
This, however, is a matter for future research. It 
is assumed further that the diameter D of the 
circles is equal to one. This value is taken arbitrarily 
because all formulae, if modified properly, are 
independent of the diameter D. This fact can 
become clear by the following discussion. Relation 
(27) is so modified that all terms depend bnly on 
the fractions h,/D, h,/D; because h,, h2 vary with 
D as seen in the bounds of the integration 
(0 c h, < nD, 0 < hz c mD) the fractions always 
remain independent of D. The total area A is 
connected to the inclusions-area A,, which is a 
function of D’ (circular inclusions), by the relation 
A = A, + A2 (A2 is the matrix area) which means that 
A is also a function of D*. This makes (27) indepen- 
dent of D as a whole. For all values of D one always 
derives the same value of P. This is a remarkable 
result of the method here. 

Performing the integration, the value for P was 
found to be equal to 1598. In this way the ensemble 
average (37) has been found to be equal to 
(a’(r)a’(r)a’(r))E*+ P and will be set into the 
denominator of the bounds (32) and (33). The 
upper and lower bounds of first as well as of 
second and third order are plotted in Fig. 3, with u, 
and CJ? taking the values 0.02 and 1, respectively. 
These values are arbitrary and it has been found [14] 
that the smaller their difference the narrower the 
bounds. The bounds are plotted for the case that 
homogeneity holds so that they finally depend on 
the area fraction AI/A. The area fraction becomes 
equal to one (the maximal value) if the composite 
matrix is totally covered with inclusions, so that 
practically only one phase appears. One can see 
that the bounds of third order are narrower than 
the simple first order bounds of Voigt and Reuss. 
This occurs because the higher the order of the 
correlation functions taken into account the narrower 
are the bounds and of course the more exact the 
outcome. 

A,/A 

Fig. 3. The optimal bounds of first (---), second (* .) and 
third (-) order. 

6. CONCLUSION 

In this work a method for calculating the effective 
values of physical properties described by tensors of 
the 2nd rank has been presented and applied to 
electrical and heat conductivity. Correlation func- 
tions of first, second and third order as well as their 
deviations have been derived for circular inclusions in 
a two phase composite. All the expressions obtained 
through a geometrical calculation of areas give results 
for the effective values independent of the diameter of 
the circular inclusions and this represents a major 
accomplishment. 

The effective value oeR has been computed within 
the optimum upper and lower bounds of first and 
third order, under consideration of homogeneity 
and isotropy for the composite. The bounds become 
more exact if higher order correlation functions 
and their deviations are considered. Calculations for 
higher order terms than the third have not yet been 
implemented. 
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